Online Appendix

Proposition 2.1 The set $P_n(\mathbb{N})$ forms a group under the operation $+_P$, which adds the debit and credit components separately for each element.

Verification: We verify that the operation $+_P$ is well-defined, implying that the result does not depend on the choice of representatives of the equivalence classes.

Suppose that $p, q \in P_n(\mathbb{N})$ can be written as:

$$\mathbf{p} = ([p_1^d//p_1^c], ..., [p_n^d//p_n^c])^{\mathsf{t}} = ([r_1^d//r_1^c], ..., [r_n^d//r_n^c])^{\mathsf{t}},$$

$$\boldsymbol{q} = \left(\left[q_1^d //q_1^c \right], \dots, \left[q_n^d //q_n^c \right] \right)^{\mathrm{t}} = \left(\left[s_1^d //s_1^c \right], \dots, \left[s_n^d //s_n^c \right] \right)^{\mathrm{t}}.$$

We must check that

$$[p_i^d + q_i^d / / p_i^c + q_i^c] = [r_i^d + s_i^d / / r_i^c + s_i^c](i = 1, 2, ..., n).$$

By the definition of the T-term, $[p_i^d//p_i^c] = [r_i^d//r_i^c]$ implies that $p_i^d + r_i^c = p_i^c + r_i^d$. Similarly, from $[q_i^d//q_i^c] = [s_i^d//s_i^c]$, we have $q_i^d + s_i^c = q_i^c + s_i^d$.

Adding these equalities, we have

$$(p_i^d + q_i^d) + (r_i^c + s_i^c) = (p_i^c + q_i^c) + (r_i^d + s_i^d).$$

By the definition of \sim , this shows

$$[p_i^d + q_i^d / / p_i^c + q_i^c] = [r_i^d + s_i^d / / r_i^c + s_i^c].$$

Thus, the operation $+_{P}$ is well-defined.

Proof: To prove that $P_n(\mathbb{N})$ forms a group, the following properties must be verified:

(i) closure, (ii) associativity, (iii) existence of an identity element, and (iv) existence of inverse elements.

Let $p, q, r \in P_n(\mathbb{N})$ be arbitrary elements:

$$\boldsymbol{p} = \left(\left[p_1^d / / p_1^c \right], \dots, \left[p_n^d / / p_n^c \right] \right)^{\mathsf{t}}, \boldsymbol{q} = \left(\left[q_1^d / / q_1^c \right], \dots, \left[q_n^d / / q_n^c \right] \right)^{\mathsf{t}}, \boldsymbol{r} = \left(\left[r_1^d / / r_1^c \right], \dots, \left[r_n^d / / r_n^c \right] \right)^{\mathsf{t}}.$$

(i) Closure

By the definition of $+_{\mathbb{P}}$ in $P_n(\mathbb{N})$:

$$\mathbf{p}+_{\mathbf{P}}\mathbf{q} = \begin{pmatrix} \left[p_1^d + q_1^d / / p_1^c + q_1^c\right] \\ \vdots \\ \left[p_n^d + q_n^d / / p_n^c + q_n^c\right] \end{pmatrix}.$$

Since $p, q \in P_n(\mathbb{N})$, we have:

$$\sum_{i=1}^{n} p_{i}^{d} = \sum_{i=1}^{n} p_{i}^{c}, \sum_{i=1}^{n} q_{i}^{d} = \sum_{i=1}^{n} q_{i}^{c}.$$

Adding these equalities:

$$\sum_{i=1}^{n} (p_i^d + q_i^d) = \sum_{i=1}^{n} (p_i^c + q_i^c)$$

Thus, $p+pq \in P_n(\mathbb{N})$, proving closure.

(ii) Associativity

$$(\mathbf{p}+_{P}\mathbf{q})+_{P}\mathbf{r} = \begin{pmatrix} [p_{1}^{d}+q_{1}^{d}//p_{1}^{c}+q_{1}^{c}] \\ \vdots \\ [p_{n}^{d}+q_{n}^{d}//p_{n}^{c}+q_{n}^{c}] \end{pmatrix} +_{P} \begin{pmatrix} [r_{1}^{d}//r_{1}^{c}] \\ \vdots \\ [r_{n}^{d}//r_{n}^{c}] \end{pmatrix}$$
$$= \begin{pmatrix} [p_{1}^{d}+q_{1}^{d}+r_{1}^{d}//p_{1}^{c}+q_{1}^{c}+r_{1}^{c}] \\ \vdots \\ [p_{n}^{d}+q_{n}^{d}+r_{n}^{d}//p_{n}^{c}+q_{n}^{c}+r_{n}^{c}] \end{pmatrix}.$$

Similarly,

$$\begin{aligned} \boldsymbol{p} +_{\mathrm{P}}(\boldsymbol{q} +_{\mathrm{P}} \boldsymbol{r}) &= \begin{pmatrix} \left[p_{1}^{d} / / p_{1}^{c} \right] \\ \vdots \\ \left[p_{n}^{d} / / p_{n}^{c} \right] \end{pmatrix} +_{\mathrm{P}} \begin{pmatrix} \left[q_{1}^{d} + r_{1}^{d} / / q_{1}^{c} + r_{1}^{c} \right] \\ \vdots \\ \left[q_{n}^{d} + r_{n}^{d} / / q_{n}^{c} + r_{n}^{c} \right] \end{pmatrix} \\ &= \begin{pmatrix} \left[p_{1}^{d} + q_{1}^{d} + r_{1}^{d} / / p_{1}^{c} + q_{1}^{c} + r_{1}^{c} \right] \\ \vdots \\ \left[p_{n}^{d} + q_{n}^{d} + r_{n}^{d} / / p_{n}^{c} + q_{n}^{c} + r_{n}^{c} \right] \end{pmatrix}. \end{aligned}$$

Thus.

$$(p+_{P}q)+_{P}r = p+_{P}(q+_{P}r).$$

(iii) Identity element

Let $e_i \in \mathbb{N}(i = 1, 2, ..., n)$ and consider the element:

$$\boldsymbol{e} = \begin{pmatrix} [e_1//e_1] \\ \vdots \\ [e_n//e_n] \end{pmatrix} \in P_n(\mathbb{N}).$$

For any $p = ([d_1//c_1], ..., [d_n//c_n])^t \in P_n(\mathbb{N})$, consider the *i*-th component of $p+_{\mathbb{P}}e$:

$$[d_i + e_i / / c_i + e_i] = [d_i / / c_i].$$

As this is equal to the *i*-th component of p, it follows that:

$$p+_{P}e=p$$

Similarly, as $e +_{\mathbb{P}} p = p$ also holds, e is the identity element in $P_n(\mathbb{N})$.

Although the identity element e may appear to have multiple representations, any T-term with equal debits and credits is equal to the zero-term. Hence,

$$\boldsymbol{e} = \begin{pmatrix} [e_1//e_1] \\ \vdots \\ [e_n//e_n] \end{pmatrix} = \begin{pmatrix} [0//0] \\ \vdots \\ [0//0] \end{pmatrix},$$

and the identity element is unique.

(iv) Inverse element

For any $p = ([d_1//c_1], ..., [d_n//c_n])^t \in P_n(\mathbb{N})$, define its inverse p^{inv} by swapping the debit and credit components:

$$p^{\text{inv}} = ([c_1//d_1], ..., [c_n//d_n])^{\text{t}}.$$

Then, we compute:

$$p +_{P} p^{\text{inv}} = p^{\text{inv}} +_{P} p$$

$$= \begin{pmatrix} [d_1 + c_1//d_1 + c_1] \\ \vdots \\ [d_n + c_n//d_n + c_n] \end{pmatrix}$$

$$= e$$

Thus, p^{inv} is the inverse element of p, completing the proof.

Proposition 2.2 The set $Bal_n(\mathbb{Z})$ forms a group under the component-wise addition operation $+_B$. Proof: To prove that $Bal_n(\mathbb{Z})$ is a group, we must verify the following properties:

- (i) Closure: The sum of any two elements of $Bal_n(\mathbb{Z})$ remains in $Bal_n(\mathbb{Z})$.
- (ii) Associativity: The addition operation satisfies the associative property.
- (iii) Identity element: An element exists in $Bal_n(\mathbb{Z})$ that acts as an additive identity.
- (iv) Inverse element: Each element in $Bal_n(\mathbb{Z})$ has an additive inverse.

Let $\mathbf{u} = (u_1, \dots, u_n)^{\mathsf{t}}, \mathbf{v} = (v_1, \dots, v_n)^{\mathsf{t}}, \mathbf{w} = (w_1, \dots, w_n)^{\mathsf{t}}$ be arbitrary elements of $\mathrm{Bal}_n(\mathbb{Z})$.

(i) Closure under addition

By the definition of addition in $Bal_n(\mathbb{Z})$:

$$u+_{\rm B}v=(u_1+v_1,\ldots,u_n+v_n)^{\rm t}$$

Taking the sum of the components:

$$\sum_{i=1}^{n} (u_i + v_i) = \sum_{i=1}^{n} u_i + \sum_{i=1}^{n} v_i$$

$$= 0 + 0$$

$$= 0.$$

Therefore, $u+_{\mathbf{R}}v\in \mathrm{Bal}_n(\mathbb{Z})$, proving closure.

(ii) Associativity

We verify the associativity of $+_B$:

$$(u +_{B} v) +_{B} w = (u_{1} + v_{1}, ..., u_{n} + v_{n})^{t} + (w_{1}, ..., w_{n})^{t}$$

= $(u_{1} + v_{1} + w_{1}, ..., u_{n} + v_{n} + w_{n})^{t}$.

Similarly,

$$\mathbf{u}_{B}(\mathbf{v}_{B}\mathbf{w}) = (u_{1}, ..., u_{n})^{t} + (v_{1} + w_{1}, ..., v_{n} + w_{n})^{t}$$

 $= (u_1 + v_1 + w_1, ..., u_n + v_n + w_n)^{t}$.

As both expressions are equal, associativity holds:

$$(u+_{\mathsf{R}}v)+_{\mathsf{R}}w=u+_{\mathsf{R}}(v+_{\mathsf{R}}w).$$

(iii) Identity element

Define $\mathbf{0}_n$ as the zero vector $(0,...,0)^{\mathsf{t}} \in \mathrm{Bal}_n(\mathbb{Z})$. For any $u \in \mathrm{Bal}_n(\mathbb{Z})$:

$$u +_{B} \mathbf{0}_{n} = \mathbf{0}_{n} +_{B} u = (u_{1}, ..., u_{n})^{t}.$$

Thus, $\mathbf{0}_n$ is the identity element in $\mathrm{Bal}_n(\mathbb{Z})$.

(iv) Inverse element

For any $\mathbf{u} = (u_1, ..., u_n)^{\mathsf{t}} \in \mathrm{Bal}_n(\mathbb{Z})$, define $\mathbf{u}^{\mathrm{inv}}$ as:

$$\mathbf{u}^{\mathrm{inv}} = (-u_1, \dots, -u_n)^{\mathrm{t}} \in \mathrm{Bal}_n(\mathbb{Z}).$$

Then.

$$u+_{\mathrm{B}}u^{\mathrm{inv}}=u^{\mathrm{inv}}+_{\mathrm{B}}u=\mathbf{0}_{n}.$$

Thus, u^{inv} is the additive inverse of u.

As $Bal_n(\mathbb{Z})$ satisfies closure, associativity, the existence of an identity element, and the existence of inverse elements, it forms a group under the addition operation $+_{\mathbb{R}}$.

Theorem 3.1 The Pacioli group $P_n(\mathbb{N})$ and the balance module $Bal_n(\mathbb{Z})$ are isomorphic as groups.

Verification: We verified that f is well-defined, that is, the mapping f sends elements of $P_n(\mathbb{N})$ to the same element of $\operatorname{Bal}_n(\mathbb{Z})$, independent of the choice of representatives.

Suppose an element $p \in P_n(\mathbb{N})$ is expressed using different representatives as follows:

$$\boldsymbol{p} = \begin{pmatrix} [d_1//c_1] \\ \vdots \\ [d_n//c_n] \end{pmatrix} = \begin{pmatrix} [d_1'//c_1'] \\ \vdots \\ [d_n'/c_n'] \end{pmatrix}.$$

Focusing on the i-th component, we have:

$$[d_i//c_i] = [d'_i//c'_i].$$

By the definition of the T-term, the following equality holds:

$$d_i + c_i' = d_i' + c_i.$$

Interpreting this as an equality in \mathbb{Z} , we rearrange it to obtain:

$$d_i - c_i = d'_i - c'_i.$$

Thus, it follows that:

$$f\left(\begin{pmatrix} [d_1//c_1] \\ \vdots \\ [d_n//c_n] \end{pmatrix}\right) = \begin{pmatrix} d_1 - c_1 \\ \vdots \\ d_n - c_n \end{pmatrix} = \begin{pmatrix} d_1' - c_1' \\ \vdots \\ d_n' - c_n' \end{pmatrix} = f\left(\begin{pmatrix} [d_1'//c_1'] \\ \vdots \\ [d_n'//c_n'] \end{pmatrix}\right).$$

Therefore, we have confirmed that f is well-defined.

Proof: To prove the isomorphism, we show that the mapping $f: P_n(\mathbb{N}) \to \mathrm{Bal}_n(\mathbb{Z})$ is a group homo-

morphism and a bijection (both surjective and injective).

Step 1: Proving that f is a group homomorphism

Group homomorphism is a mapping from one group to another that is known to "preserve the group structure." In this paper, it refers to a mapping satisfying the following property: the balance vector (an element of the balance module) obtained by applying f to the sum of two elements of the Pacioli group is equal to the sum of the balance vectors obtained by applying f to each element individually. In other words, to show that f is a group homomorphism, we must show that for any p, $p' \in P_n(\mathbb{N})$, the following holds:

$$f(\mathbf{p}+_{\mathsf{P}}\mathbf{p}')=f(\mathbf{p})+_{\mathsf{B}}f(\mathbf{p}').$$

Now we suppose that

$$\boldsymbol{p} = \begin{pmatrix} [d_1//c_1] \\ \vdots \\ [d_n//c_n] \end{pmatrix}, \boldsymbol{p}' = \begin{pmatrix} [d_1'//c_1'] \\ \vdots \\ [d_n'/c_n'] \end{pmatrix}.$$

We compute the image of their sum under f:

$$f(\boldsymbol{p}+_{\mathbf{P}}\boldsymbol{p}') = f\left(\begin{pmatrix} [d_1//c_1] \\ \vdots \\ [d_n//c_n] \end{pmatrix} +_{\mathbf{P}}\begin{pmatrix} [d_1'//c_1'] \\ \vdots \\ [d_n'//c_n'] \end{pmatrix}\right).$$

By the definition of $+_{P}$ in $P_{n}(\mathbb{N})$:

$$= f\left(\binom{[d_1 + d'_1//c_1 + c'_1]}{\vdots} \\ [d_n + d'_n//c_n + c'_n]\right).$$

Applying the definition of f:

$$= \begin{pmatrix} d_1 + d'_1 - c_1 - c'_1 \\ \vdots \\ d_n + d'_n - c_n - c'_n \end{pmatrix}.$$

Rewriting:

$$= \begin{pmatrix} d_1 - c_1 \\ \vdots \\ d_n - c_n \end{pmatrix} +_{\mathbf{B}} \begin{pmatrix} d'_1 - c'_1 \\ \vdots \\ d'_n - c'_n \end{pmatrix}.$$

Since $f(\mathbf{p}) = (d_1 - c_1, ..., d_n - c_n)^t$ and $f(\mathbf{p}') = (d_1' - c_1', ..., d_n' - c_n')^t$, we conclude:

$$f(\mathbf{p}+_{\mathrm{P}}\mathbf{p}')=f(\mathbf{p})+_{\mathrm{R}}f(\mathbf{p}').$$

Thus, f is a group homomorphism.

Step 2: Proving that f is surjective

Let $v = (v_1, ..., v_n)^t \in \operatorname{Bal}_n(\mathbb{Z})$ be an arbitrary element. Define a list of T-terms p^v such that its i-th component p_i^v is given by:

$$p_i^{v} = \begin{cases} [v_i//0] & \text{if } v_i \ge 0, \\ [0/-v_i] & \text{if } v_i < 0. \end{cases}$$

Next, we compute the total debit sum S^{debit} and total credit sum S^{credit} :

$$S^{\text{debit}} = \sum_{i \text{ s.t.} v_i \ge 0} v_i, S^{\text{credit}} = -\sum_{i \text{ s.t.} v_i < 0} v_i.$$

As v is an element of $Bal_n(\mathbb{Z})$, it satisfies:

$$\sum_{i=1}^{n} v_{i} = \sum_{i \text{ s.t.} v_{i} \ge 0} v_{i} + \sum_{i \text{ s.t.} v_{i} < 0} v_{i} = 0.$$

Rearranging:

$$\sum_{i \text{ s.t.} v_i \ge 0} v_i = -\sum_{i \text{ s.t.} v_i < 0} v_i.$$

Thus, the total debit and credit sums are equal, implying that $p^{v} \in P_{n}(\mathbb{N})$.

Finally, applying f to p^{ν} :

$$f(\mathbf{p}^{\mathbf{v}}) = \mathbf{v}$$
.

Because for every element $v \in \operatorname{Bal}_n(\mathbb{Z})$, a corresponding $p^v \in P_n(\mathbb{N})$ exists such that $f(p^v) = v$, the mapping f is surjective.

Step 3: Proving that f is injective

To prove injectivity, we must show that for any two elements p and p':

$$\mathbf{p} = ([d_1//c_1], ..., [d_n//c_n])^{t}, \mathbf{p}' = ([d'_1//c'_1], ..., [d'_n//c'_n])^{t},$$

 $f(\mathbf{p}) = f(\mathbf{p}')$ implies $\mathbf{p} = \mathbf{p}'$.

If $f(\mathbf{p}) = f(\mathbf{p}')$, then for each i:

$$d_i - c_i = d'_i - c'_i.$$

Rewriting:

$$d_i + c_i' = d_i' + c_i.$$

By the definition of the T-term equivalence relation, this implies:

$$[d_i//c_i] = [d'_i//c'_i].$$

Thus, p = p', proving that f is injective.

As $f: P_n(\mathbb{N}) \to \operatorname{Bal}_n(\mathbb{Z})$ is a bijective group homomorphism, it is a group isomorphism. Therefore, the Pacioli group, $P_n(\mathbb{N})$ and the balance module, $\operatorname{Bal}_n(\mathbb{Z})$ are isomorphic as groups.